Lascoux-style Resolutions and the Betti Numbers of Matching and Chessboard Complexes
نویسندگان
چکیده
This paper generalizes work of Lascoux and Jo zeeak-Pragacz-Weyman computing the characteristic zero Betti numbers in minimal free resolutions of ideals generated by 2 2 minors of generic matrices and generic symmetric matrices, respectively. In the case of 2 2 minors, the quotients of certain polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and we compute the analogous Betti numbers for certain natural modules over these Segre and quadratic Veronese subalgebras. The motivation for these results are twofold: Using an old observation on computing Betti numbers of semigroup modules over semigroup rings in terms of simplicial complexes, we immediately deduce from these results the irreducible decomposition for the symmetric group action on the rational homology of all chessboard complexes and complete graph matching complexes as studied by Bjj orner, Lovasz, Vre cica and Zivaljevi c The class of modules over the Segre rings and quadratic Veronese rings which we consider is closed under the operation of taking canonical modules, and hence exposes a pleasant symmetry inherent in these Betti numbers.
منابع مشابه
Minimal Resolutions and the Homology of Matching and Chessboard Complexes
We generalize work of Lascoux and Józefiak-Pragacz-Weyman on Betti numbers for minimal free resolutions of ideals generated by 2× 2 minors of generic matrices and generic symmetric matrices, respectively. Quotients of polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and we compute the analogous Betti numbers for some natural modules over these Segre a...
متن کاملResolutions and the Homology of Matching and Chessboard Complexes
We generalize work of Lascoux and Jo zeeak-Pragacz-Weyman on Betti numbers for minimal free resolutions of ideals generated by 2 2 minors of generic matrices and generic symmetric matrices, respectively. Quotients of polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and we compute the analogous Betti numbers for some natural modules over these Segre an...
متن کاملTopology of Matching, Chessboard, and General Bounded Degree Graph Complexes
We survey results and techniques in the topological study of simplicial complexes of (di-, multi-, hyper-)graphs whose node degrees are bounded from above. These complexes have arisen is a variety of contexts in the literature. The most wellknown examples are the matching complex and the chessboard complex. The topics covered here include computation of Betti numbers, representations of the sym...
متن کاملOn the Betti Numbers of Chessboard Complexes
In this paper we study the Betti numbers of a type of simplicial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us to determine which is the first nonvanishing Betti number (aside from the 0-th Betti number). We can therefore settle certain cases of a conjecture of Björner, Lovász, Vrećica, and Z̆ival...
متن کاملOn a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کامل